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A. OBJECTIVE 

 
In recent years, spacecraft-antenna design has been a process often requiring many 

expensive iterations before an acceptable design is obtained.  At present, predictions of the 
combined antenna-spacecraft multipath performance are quite limited and a mockup of the 
vehicle with the antenna must be built and tested.  In the future, fast and efficient computational 
modeling of antenna-spacecraft electromagnetic (EM) performance must play a larger role in the 
antenna-design process, and these cut-and-try methods must be used less.   

 
The objective of this research project was to develop a new, fast and accurate EM solver 

[1] of UHF antenna-spacecraft performance (multipath) that significantly reduces the time and 
memory (e.g., 100 to 1000 times faster and 100 to 1000 times less memory) required to create 
and iterate an all-metal, antenna-spacecraft design.   

 
In our approach, we strived to develop an accurate and efficient EM solver of surface 

integrals based on the Magnetic Field Integral Equation (MFIE) as well as the corresponding 
Electric Field Integral Equation (EFIE), and their combination [2].  In attempting to develop 
accurate and efficient integrators for these surface integrals, two main problems were addressed, 
namely, accurate evaluation of the singular adjacent interactions without undue compromise of 
speed, and fast evaluation of the voluminous number of nonadjacent interactions without 
compromise in accuracy. 

 
Our adjacent, high-order integrators are based on analytical resolution of singularities. 

The only alternative approach in existence is based on strategies of refinement around 
singularities (Canino et al. [3]). The approach we introduce is advantageous since it does not 
require costly setup manipulations, and it leads to substantially more accurate and faster 
numerics.  

 
The accelerator we introduced for the nonadjacent interactions, in turn, is related to one 

of the most advanced FFT (fast Fourier transform) methods developed recently [4].  A number of 
innovations in our approach, however, lead to very significant memory savings and faster 
numerics.  Our design reduces, significantly, the size of the required FFTs – from N2 to N4/3 
points, with proportional improvement in storage requirements and operation count.  Further, it 
results in super-algebraic convergence of the equivalent source approximations as the electrical 
size of the body (spacecraft)  is increased.  



 

 230

 
B. PROGRESS & RESULTS 
 

1. EM Field Solver Results for Metallic Bodies 
 

We computed results for well-known and widely used test geometries with 
surface singularities (edges, tips); cube, lenticular body of revolution, and ogive.   For our 
new non-accelerated Maxwell solver, scattering results for an electromagnetic cube (Fig. 
1) of about one wavelength on diagonal were obtained with errors of the order of 10-4, 
while results for the electromagnetic lenticular body of revolution (Fig. 2) two 
wavelengths in diameter were obtained with errors 10-5.  Comparison of  results with and 
without our fully accelerated Maxwell solver for an ogive (Fig. 3) are summarized in 
Table 1. 

 
2. EM Field Solver Results for Large Penetrable Bodies 

 
We illustrate the capabilities of this method by means of two-dimensional 

scattering by a dielectric tube with refractive index distribution, depicted in Figure 4.  In 
Table 2, the numerical results for this example demonstrate both the O(N logN) 
complexity and the high-order convergence rate of our method. In particular, the method 
seems to yield significantly more than second-order convergence in the near field and 
third-order convergence in the far field for discontinuous scatterers. 

 
3. Geometry Representation Results 
 

Generally, the raw geometry representations available in engineering practice 
must be processed to satisfy the requirements of a given EM solver. As an example of the 
geometry processing that might be required, consider the moon-lander spacecraft shown 
in Figure 5. Use of an accurate high-order integral equation (IE) solver in connection 
with a geometry of this type requires highly accurate parameterizations of the surface, 
which can only be produced through partition of the geometry in appropriately simple 
sub-domains followed by appropriate sub-domain parameterization. The processing steps 
we used may be classified into 1) Patching, and 2) Smooth-patch representation. 

 
Patch detection - One type of sub-domain that can be treated easily is a planar 

surface. Vehicles such as those shown in Figure 5 often have many planar regions, and in 
such regions the re-parameterization required for a given IE solver can be performed 
quite easily on a mesh for which the necessary re-parameterization is straightforward. 
The main problem associated with planar regions is detection. Rather than have the user 
explicitly mark regions that are planar, such simple patches are automatically detected 
and processed. Smooth, non-planar patches are numerous as well. The problem of 
parameterization of such patches are complex and require user interaction for correct 
processing.  For example, when we find a single patch that contains both planar and non-
planar elements, the user must specify how such a patch is handled. 
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Smooth-patch representation – For singularities arising from intersection of 
smooth, non-planar surfaces, we provide smooth representations of surfaces whose 
triangulations are abruptly terminated at an edge, although the original surface could be 
continued smoothly just like each face of a cube can be continued smoothly, beyond its 
edges and corners, as a larger planar surface.  We generate parameterizations in this case 
by means of Fourier series expansions of a smooth periodic function with period larger 
than the domain in which the data is given.  The Fourier series interpolator is likely to be 
highly oscillatory, but with added conditions we can ensure that, in some appropriate 
sense, they decay “fast enough” for the smooth function they interpolate. This can be 
accomplished by requiring that these coefficients be multiplied by certain growing factors 
that vanish in the least-square sense. The factors equal one for low-order coefficients, and 
various rates of growth, from polynomial to exponential, can be used for higher-order 
modes [5].  

 
4. Comparison with other “Fast” solvers 

 
In the following, we compare our results with the some of the most competitive 

algorithms available.  We compare the overall performance of our method with the Fast 
Multipole Method [6] FMM-based algorithm called “FISC” [7], we compare our 
Nystrom high-order integrator to that of “FastScat” [3], and we outline the distinctions 
between our approach and the AIM [4] algorithm. 

 
The FMM-based algorithms provide considerable acceleration; they run in as little 

as O(N logN) operations per iteration. However, high-order accuracy has not been 
demonstrated in FMM computations of wave scattering. A possible explanation for this 
fact is that the FMM approach contains multiplication by Hankel functions of high order. 
These operations lead to accuracy limitations known as “subwavelength breakdown.”  In 
contrast, the FFT acceleration techniques are stable. Table 3 compares the performance of 
our algorithms to FISC and we see that the present algorithm achieves considerably 
higher accuracy with less computational resources. 

 
In Table 4, we present results from our basic high-order integrator without use of 

FFT acceleration, together with results produced by the program FastScat, which utilizes 
the high-order Nystrom discretization technique proposed in [3], for scattering by a small 
sphere.  We only show setup time reported in [3], since LU decomposition was used to 
solve their resulting linear system.  Our algorithm shows the full time required for the 
setup and solution.  It should be noted that different computers were used (Sparc 10 in [3] 
and a 400MHz PC in our work) and different problems were solved (Maxwell system in 
[3] and Helmholtz equation in our work). We see that our method produces substantially 
more accurate results and smaller computing times. 

 
In comparison with AIM [4], our FFT acceleration technique differs in that it uses 

surface rather than volumetric distributions of equivalent sources which lead to 1) 
substantially reduced memory requirement, 2) spectrally convergent approximations, and 
3) improved operation count. For example, for an N point discretization, AIM requires an 
O(N3/2) FFT and a corresponding O(N3/2) amount of RAM.  Our method requires six 
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FFTs of  O(N4/3). This implies a significantly lower memory requirement.  Such 
reductions and convergence properties have allowed us to compute very accurately, on a 
personal computer, scattering from the bodies of sizes close to the largest reported up to 
now [4], where forty IBM SP2 nodes were used in the latter work to treat scatterers of 
diameters up to 70λ; no error estimates were given in that work.  

 
C. SIGNIFICANCE OF RESULTS 
 

We succeeded in developing an initial research code to verify this new, fast and accurate 
solver technique that performs substantially better (faster & with less memory) than current 
conventional methods.  This improvement was demonstrated by testing the new algorithm’s 
performance on certain structures with metallic & dielectric properties.  This result is a first step 
toward developing a fully validated EM simulation for predicting with full fidelity the near-fields 
and far-fields of  complete antenna/spacecraft/solar panel structures.  We expect this work to 
lead to reduction in cost of spacecraft design, enhanced performance of the spacecraft telecom 
link, and improved performance of certain on-board scientific-instrument-antenna systems. 
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Figure 1. Electromagnetic 
(conducting) cube with 1λ diagonal. 

Figure 2.  Electromagnetic (conducting) 
lenticular body of revolution with 2λ. 

Figure 3. Electromagnetic 
(conducting) ogive with lengths 

from 1λ to 20λ.

Figure 4.  2D penetrable scatterer 
with refractive index n=n(x).  

Diameter = 10λ .

Figure 5.  Sample spacecraft is a 
complex combination of flat and 

singular surfaces (edges and tips). 
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Type Size Unknowns Iterations Time/Iter Rel MS Norm Abs Max Norm 
Non-Accel 1λ 1568 20 69s 2.5e-3 1.4e-3 
Non-Accel 1λ 6336 17 12m 45s 3.8e-5 2.2e-5  
Non-Accel 1λ 25472 17 3h 27m 9.8e-7 4.8e-7  
Accelerated 10λ 34112 13 26m 3.8e-4 2.1e-4 
Accelerated 20λ 34112 14 14m 6.0e-3 2.4e-3 
Accelerated 20λ 72320 19 67m 5.4e-5 2.1e-5 

N Memory Iter Time NF Error Ratio FF Error Ratio 
12K 19 MB 54 36s 2.2e-5   7.3e-9  
25K 39 MB 54 72s 4.8e-7 44.9 1.1e-11  692 
50K 75 MB 54 160s 1.1e-8 45.8 4.5e-12  conv 

99K 150 MB 54 331s 4.8e-10 22.1 4.5e-12 conv 
198K 305 MB 54 561s 1.4e-11 35.0 4.6e-12 conv 

396K 609 MB 54 1172s 1.9e-12 conv 4.7e-12 conv 

Algorithm Sphere 
Radius 

Time RAM Unknowns RMS Error Computer 

FISC 12λ 12h 1.8 GB 602 K 7.2% SGI R8000 
Non-Accel 12λ 6.5h 24 MB 26.2 K .22% 400 MHz PC  
Accelerated 12λ 16h 120 MB 87.3 K .00096% 400 MHz PC  

FISC 24λ 8 x 5h 5 GB 2.4 M 7.9% SGI Origin (8 cpu) 
Accelerated 24λ 33h 807 MB 350 K .024% 400 MHz PC 

Algorithm Sphere 
Radius 

Time Unknowns RMS Error 

Nystrom 2.7λ 1953s (setup) 5400 2.3% 
Galerkin 2.7λ 38803s (setup) 5400 .48% 

Non-Accelerated 2.7λ 294s 2526 .068% 
Non-Accelerated 2.7λ 1430s 5430 .0025% 

Table 1.  Results for conducting ogive with and without our accelerated 
solver (400 MHz CPU with 1 GB RAM). 

Table 3. Results for scattering by large conducting spheres 
computed using FISC versus our algorithms. 

Table 4. Results for scattering by small conducting sphere 
using FastScat versus our unaccelerated algorithm. 

Table 2.  Our results for 2D penetrable dielectric tube (Fig. 4) with 
refractive index n=n(x) and diameter = 10λ.  Iter shows number of 
iterations required by GMRES [8]; NF and FF errors are absolute 
maximum norm of error in near- and far-fields; Ratio is ratio of 2 

consecutive NF and FF errors. 


